Polars
clean_names
clean_names implementation for polars.
clean_names(df, strip_underscores=None, case_type='lower', remove_special=False, strip_accents=False, truncate_limit=None)
Clean the column names in a polars DataFrame.
clean_names
can also be applied to a LazyFrame.
Examples:
>>> import polars as pl
>>> import janitor.polars
>>> df = pl.DataFrame(
... {
... "Aloha": range(3),
... "Bell Chart": range(3),
... "Animals@#$%^": range(3)
... }
... )
>>> df
shape: (3, 3)
┌───────┬────────────┬──────────────┐
│ Aloha ┆ Bell Chart ┆ Animals@#$%^ │
│ --- ┆ --- ┆ --- │
│ i64 ┆ i64 ┆ i64 │
╞═══════╪════════════╪══════════════╡
│ 0 ┆ 0 ┆ 0 │
│ 1 ┆ 1 ┆ 1 │
│ 2 ┆ 2 ┆ 2 │
└───────┴────────────┴──────────────┘
>>> df.clean_names(remove_special=True)
shape: (3, 3)
┌───────┬────────────┬─────────┐
│ aloha ┆ bell_chart ┆ animals │
│ --- ┆ --- ┆ --- │
│ i64 ┆ i64 ┆ i64 │
╞═══════╪════════════╪═════════╡
│ 0 ┆ 0 ┆ 0 │
│ 1 ┆ 1 ┆ 1 │
│ 2 ┆ 2 ┆ 2 │
└───────┴────────────┴─────────┘
New in version 0.28.0
Parameters:
Name | Type | Description | Default |
---|---|---|---|
strip_underscores |
str | bool
|
Removes the outer underscores from all column names. Default None keeps outer underscores. Values can be either 'left', 'right' or 'both' or the respective shorthand 'l', 'r' and True. |
None
|
case_type |
str
|
Whether to make the column names lower or uppercase. Current case may be preserved with 'preserve', while snake case conversion (from CamelCase or camelCase only) can be turned on using "snake". Default 'lower' makes all characters lowercase. |
'lower'
|
remove_special |
bool
|
Remove special characters from the column names. Only letters, numbers and underscores are preserved. |
False
|
strip_accents |
bool
|
Whether or not to remove accents from the labels. |
False
|
truncate_limit |
int
|
Truncates formatted column names to the specified length. Default None does not truncate. |
None
|
Returns:
Type | Description |
---|---|
DataFrame | LazyFrame
|
A polars DataFrame/LazyFrame. |
Source code in janitor/polars/clean_names.py
35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 |
|
make_clean_names(expression, strip_underscores=None, case_type='lower', remove_special=False, strip_accents=False, enforce_string=False, truncate_limit=None)
Clean the labels in a polars Expression.
Examples:
>>> import polars as pl
>>> import janitor.polars
>>> df = pl.DataFrame({"raw": ["Abçdê fgí j"]})
>>> df
shape: (1, 1)
┌─────────────┐
│ raw │
│ --- │
│ str │
╞═════════════╡
│ Abçdê fgí j │
└─────────────┘
Clean the column values:
>>> df.with_columns(pl.col("raw").make_clean_names(strip_accents=True))
shape: (1, 1)
┌─────────────┐
│ raw │
│ --- │
│ str │
╞═════════════╡
│ abcde_fgi_j │
└─────────────┘
New in version 0.28.0
Parameters:
Name | Type | Description | Default |
---|---|---|---|
strip_underscores |
str | bool
|
Removes the outer underscores from all labels in the expression. Default None keeps outer underscores. Values can be either 'left', 'right' or 'both' or the respective shorthand 'l', 'r' and True. |
None
|
case_type |
str
|
Whether to make the labels in the expression lower or uppercase. Current case may be preserved with 'preserve', while snake case conversion (from CamelCase or camelCase only) can be turned on using "snake". Default 'lower' makes all characters lowercase. |
'lower'
|
remove_special |
bool
|
Remove special characters from the values in the expression. Only letters, numbers and underscores are preserved. |
False
|
strip_accents |
bool
|
Whether or not to remove accents from the expression. |
False
|
enforce_string |
bool
|
Whether or not to cast the expression to a string type. |
False
|
truncate_limit |
int
|
Truncates formatted labels in the expression to the specified length. Default None does not truncate. |
None
|
Returns:
Type | Description |
---|---|
Expr
|
A polars Expression. |
Source code in janitor/polars/clean_names.py
117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 |
|
complete
complete implementation for polars.
complete(df, *columns, fill_value=None, explicit=True, sort=False, by=None)
Turns implicit missing values into explicit missing values
It is modeled after tidyr's complete
function.
In a way, it is the inverse of pl.drop_nulls
,
as it exposes implicitly missing rows.
If new values need to be introduced, a polars Expression or a polars Series with the new values can be passed, as long as the polars Expression/Series has a name that already exists in the DataFrame.
complete
can also be applied to a LazyFrame.
Examples:
>>> import polars as pl
>>> import janitor.polars
>>> df = pl.DataFrame(
... dict(
... group=(1, 2, 1, 2),
... item_id=(1, 2, 2, 3),
... item_name=("a", "a", "b", "b"),
... value1=(1, None, 3, 4),
... value2=range(4, 8),
... )
... )
>>> df
shape: (4, 5)
┌───────┬─────────┬───────────┬────────┬────────┐
│ group ┆ item_id ┆ item_name ┆ value1 ┆ value2 │
│ --- ┆ --- ┆ --- ┆ --- ┆ --- │
│ i64 ┆ i64 ┆ str ┆ i64 ┆ i64 │
╞═══════╪═════════╪═══════════╪════════╪════════╡
│ 1 ┆ 1 ┆ a ┆ 1 ┆ 4 │
│ 2 ┆ 2 ┆ a ┆ null ┆ 5 │
│ 1 ┆ 2 ┆ b ┆ 3 ┆ 6 │
│ 2 ┆ 3 ┆ b ┆ 4 ┆ 7 │
└───────┴─────────┴───────────┴────────┴────────┘
Generate all possible combinations of
group
, item_id
, and item_name
(whether or not they appear in the data)
>>> with pl.Config(tbl_rows=-1):
... df.complete("group", "item_id", "item_name", sort=True)
shape: (12, 5)
┌───────┬─────────┬───────────┬────────┬────────┐
│ group ┆ item_id ┆ item_name ┆ value1 ┆ value2 │
│ --- ┆ --- ┆ --- ┆ --- ┆ --- │
│ i64 ┆ i64 ┆ str ┆ i64 ┆ i64 │
╞═══════╪═════════╪═══════════╪════════╪════════╡
│ 1 ┆ 1 ┆ a ┆ 1 ┆ 4 │
│ 1 ┆ 1 ┆ b ┆ null ┆ null │
│ 1 ┆ 2 ┆ a ┆ null ┆ null │
│ 1 ┆ 2 ┆ b ┆ 3 ┆ 6 │
│ 1 ┆ 3 ┆ a ┆ null ┆ null │
│ 1 ┆ 3 ┆ b ┆ null ┆ null │
│ 2 ┆ 1 ┆ a ┆ null ┆ null │
│ 2 ┆ 1 ┆ b ┆ null ┆ null │
│ 2 ┆ 2 ┆ a ┆ null ┆ 5 │
│ 2 ┆ 2 ┆ b ┆ null ┆ null │
│ 2 ┆ 3 ┆ a ┆ null ┆ null │
│ 2 ┆ 3 ┆ b ┆ 4 ┆ 7 │
└───────┴─────────┴───────────┴────────┴────────┘
Cross all possible group
values with the unique pairs of
(item_id, item_name)
that already exist in the data.
>>> with pl.Config(tbl_rows=-1):
... df.select(
... "group", pl.struct("item_id", "item_name"), "value1", "value2"
... ).complete("group", "item_id", sort=True).unnest("item_id")
shape: (8, 5)
┌───────┬─────────┬───────────┬────────┬────────┐
│ group ┆ item_id ┆ item_name ┆ value1 ┆ value2 │
│ --- ┆ --- ┆ --- ┆ --- ┆ --- │
│ i64 ┆ i64 ┆ str ┆ i64 ┆ i64 │
╞═══════╪═════════╪═══════════╪════════╪════════╡
│ 1 ┆ 1 ┆ a ┆ 1 ┆ 4 │
│ 1 ┆ 2 ┆ a ┆ null ┆ null │
│ 1 ┆ 2 ┆ b ┆ 3 ┆ 6 │
│ 1 ┆ 3 ┆ b ┆ null ┆ null │
│ 2 ┆ 1 ┆ a ┆ null ┆ null │
│ 2 ┆ 2 ┆ a ┆ null ┆ 5 │
│ 2 ┆ 2 ┆ b ┆ null ┆ null │
│ 2 ┆ 3 ┆ b ┆ 4 ┆ 7 │
└───────┴─────────┴───────────┴────────┴────────┘
Fill in nulls:
>>> with pl.Config(tbl_rows=-1):
... df.select(
... "group", pl.struct("item_id", "item_name"), "value1", "value2"
... ).complete(
... "group",
... "item_id",
... fill_value={"value1": 0, "value2": 99},
... explicit=True,
... sort=True,
... ).unnest("item_id")
shape: (8, 5)
┌───────┬─────────┬───────────┬────────┬────────┐
│ group ┆ item_id ┆ item_name ┆ value1 ┆ value2 │
│ --- ┆ --- ┆ --- ┆ --- ┆ --- │
│ i64 ┆ i64 ┆ str ┆ i64 ┆ i64 │
╞═══════╪═════════╪═══════════╪════════╪════════╡
│ 1 ┆ 1 ┆ a ┆ 1 ┆ 4 │
│ 1 ┆ 2 ┆ a ┆ 0 ┆ 99 │
│ 1 ┆ 2 ┆ b ┆ 3 ┆ 6 │
│ 1 ┆ 3 ┆ b ┆ 0 ┆ 99 │
│ 2 ┆ 1 ┆ a ┆ 0 ┆ 99 │
│ 2 ┆ 2 ┆ a ┆ 0 ┆ 5 │
│ 2 ┆ 2 ┆ b ┆ 0 ┆ 99 │
│ 2 ┆ 3 ┆ b ┆ 4 ┆ 7 │
└───────┴─────────┴───────────┴────────┴────────┘
Limit the fill to only the newly created
missing values with explicit = FALSE
:
>>> with pl.Config(tbl_rows=-1):
... df.select(
... "group", pl.struct("item_id", "item_name"), "value1", "value2"
... ).complete(
... "group",
... "item_id",
... fill_value={"value1": 0, "value2": 99},
... explicit=False,
... sort=True,
... ).unnest("item_id").sort(pl.all())
shape: (8, 5)
┌───────┬─────────┬───────────┬────────┬────────┐
│ group ┆ item_id ┆ item_name ┆ value1 ┆ value2 │
│ --- ┆ --- ┆ --- ┆ --- ┆ --- │
│ i64 ┆ i64 ┆ str ┆ i64 ┆ i64 │
╞═══════╪═════════╪═══════════╪════════╪════════╡
│ 1 ┆ 1 ┆ a ┆ 1 ┆ 4 │
│ 1 ┆ 2 ┆ a ┆ 0 ┆ 99 │
│ 1 ┆ 2 ┆ b ┆ 3 ┆ 6 │
│ 1 ┆ 3 ┆ b ┆ 0 ┆ 99 │
│ 2 ┆ 1 ┆ a ┆ 0 ┆ 99 │
│ 2 ┆ 2 ┆ a ┆ null ┆ 5 │
│ 2 ┆ 2 ┆ b ┆ 0 ┆ 99 │
│ 2 ┆ 3 ┆ b ┆ 4 ┆ 7 │
└───────┴─────────┴───────────┴────────┴────────┘
>>> df = pl.DataFrame(
... {
... "Year": [1999, 2000, 2004, 1999, 2004],
... "Taxon": [
... "Saccharina",
... "Saccharina",
... "Saccharina",
... "Agarum",
... "Agarum",
... ],
... "Abundance": [4, 5, 2, 1, 8],
... }
... )
>>> df
shape: (5, 3)
┌──────┬────────────┬───────────┐
│ Year ┆ Taxon ┆ Abundance │
│ --- ┆ --- ┆ --- │
│ i64 ┆ str ┆ i64 │
╞══════╪════════════╪═══════════╡
│ 1999 ┆ Saccharina ┆ 4 │
│ 2000 ┆ Saccharina ┆ 5 │
│ 2004 ┆ Saccharina ┆ 2 │
│ 1999 ┆ Agarum ┆ 1 │
│ 2004 ┆ Agarum ┆ 8 │
└──────┴────────────┴───────────┘
Expose missing years from 1999 to 2004 - pass a polars expression with the new dates, and ensure the expression's name already exists in the DataFrame:
>>> expression = pl.int_range(1999,2005).alias('Year')
>>> with pl.Config(tbl_rows=-1):
... df.complete(expression,'Taxon',sort=True)
shape: (12, 3)
┌──────┬────────────┬───────────┐
│ Year ┆ Taxon ┆ Abundance │
│ --- ┆ --- ┆ --- │
│ i64 ┆ str ┆ i64 │
╞══════╪════════════╪═══════════╡
│ 1999 ┆ Agarum ┆ 1 │
│ 1999 ┆ Saccharina ┆ 4 │
│ 2000 ┆ Agarum ┆ null │
│ 2000 ┆ Saccharina ┆ 5 │
│ 2001 ┆ Agarum ┆ null │
│ 2001 ┆ Saccharina ┆ null │
│ 2002 ┆ Agarum ┆ null │
│ 2002 ┆ Saccharina ┆ null │
│ 2003 ┆ Agarum ┆ null │
│ 2003 ┆ Saccharina ┆ null │
│ 2004 ┆ Agarum ┆ 8 │
│ 2004 ┆ Saccharina ┆ 2 │
└──────┴────────────┴───────────┘
Expose missing rows per group:
>>> df = pl.DataFrame(
... {
... "state": ["CA", "CA", "HI", "HI", "HI", "NY", "NY"],
... "year": [2010, 2013, 2010, 2012, 2016, 2009, 2013],
... "value": [1, 3, 1, 2, 3, 2, 5],
... }
... )
>>> df
shape: (7, 3)
┌───────┬──────┬───────┐
│ state ┆ year ┆ value │
│ --- ┆ --- ┆ --- │
│ str ┆ i64 ┆ i64 │
╞═══════╪══════╪═══════╡
│ CA ┆ 2010 ┆ 1 │
│ CA ┆ 2013 ┆ 3 │
│ HI ┆ 2010 ┆ 1 │
│ HI ┆ 2012 ┆ 2 │
│ HI ┆ 2016 ┆ 3 │
│ NY ┆ 2009 ┆ 2 │
│ NY ┆ 2013 ┆ 5 │
└───────┴──────┴───────┘
>>> low = pl.col('year').min()
>>> high = pl.col('year').max().add(1)
>>> new_year_values=pl.int_range(low,high).alias('year')
>>> with pl.Config(tbl_rows=-1):
... df.complete(new_year_values,by='state',sort=True)
shape: (16, 3)
┌───────┬──────┬───────┐
│ state ┆ year ┆ value │
│ --- ┆ --- ┆ --- │
│ str ┆ i64 ┆ i64 │
╞═══════╪══════╪═══════╡
│ CA ┆ 2010 ┆ 1 │
│ CA ┆ 2011 ┆ null │
│ CA ┆ 2012 ┆ null │
│ CA ┆ 2013 ┆ 3 │
│ HI ┆ 2010 ┆ 1 │
│ HI ┆ 2011 ┆ null │
│ HI ┆ 2012 ┆ 2 │
│ HI ┆ 2013 ┆ null │
│ HI ┆ 2014 ┆ null │
│ HI ┆ 2015 ┆ null │
│ HI ┆ 2016 ┆ 3 │
│ NY ┆ 2009 ┆ 2 │
│ NY ┆ 2010 ┆ null │
│ NY ┆ 2011 ┆ null │
│ NY ┆ 2012 ┆ null │
│ NY ┆ 2013 ┆ 5 │
└───────┴──────┴───────┘
New in version 0.28.0
Parameters:
Name | Type | Description | Default |
---|---|---|---|
*columns |
ColumnNameOrSelector
|
This refers to the columns to be completed. It can be a string or a column selector or a polars expression. A polars expression can be used to introduced new values, as long as the polars expression has a name that already exists in the DataFrame. |
()
|
fill_value |
dict | Any | Expr
|
Scalar value or polars expression to use instead of nulls for missing combinations. A dictionary, mapping columns names to a scalar value is also accepted. |
None
|
explicit |
bool
|
Determines if only implicitly missing values
should be filled ( |
True
|
sort |
bool
|
Sort the DataFrame based on *columns. |
False
|
by |
ColumnNameOrSelector
|
Column(s) to group by. The explicit missing rows are returned per group. |
None
|
Returns:
Type | Description |
---|---|
DataFrame | LazyFrame
|
A polars DataFrame/LazyFrame. |
Source code in janitor/polars/complete.py
268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 |
|
expand(df, *columns, sort=False, by=None)
Creates a DataFrame from a cartesian combination of all inputs.
Inspiration is from tidyr's expand() function.
expand() is often useful with
pl.DataFrame.join
to convert implicit
missing values to explicit missing values - similar to
complete
.
It can also be used to figure out which combinations are missing (e.g identify gaps in your DataFrame).
The variable columns
parameter can be a string,
a ColumnSelector, a polars expression, or a polars Series.
expand
can also be applied to a LazyFrame.
Examples:
>>> import polars as pl
>>> import janitor.polars
>>> data = [{'type': 'apple', 'year': 2010, 'size': 'XS'},
... {'type': 'orange', 'year': 2010, 'size': 'S'},
... {'type': 'apple', 'year': 2012, 'size': 'M'},
... {'type': 'orange', 'year': 2010, 'size': 'S'},
... {'type': 'orange', 'year': 2011, 'size': 'S'},
... {'type': 'orange', 'year': 2012, 'size': 'M'}]
>>> df = pl.DataFrame(data)
>>> df
shape: (6, 3)
┌────────┬──────┬──────┐
│ type ┆ year ┆ size │
│ --- ┆ --- ┆ --- │
│ str ┆ i64 ┆ str │
╞════════╪══════╪══════╡
│ apple ┆ 2010 ┆ XS │
│ orange ┆ 2010 ┆ S │
│ apple ┆ 2012 ┆ M │
│ orange ┆ 2010 ┆ S │
│ orange ┆ 2011 ┆ S │
│ orange ┆ 2012 ┆ M │
└────────┴──────┴──────┘
Get unique observations:
>>> df.expand('type',sort=True)
shape: (2, 1)
┌────────┐
│ type │
│ --- │
│ str │
╞════════╡
│ apple │
│ orange │
└────────┘
>>> df.expand('size',sort=True)
shape: (3, 1)
┌──────┐
│ size │
│ --- │
│ str │
╞══════╡
│ M │
│ S │
│ XS │
└──────┘
>>> df.expand('type', 'size',sort=True)
shape: (6, 2)
┌────────┬──────┐
│ type ┆ size │
│ --- ┆ --- │
│ str ┆ str │
╞════════╪══════╡
│ apple ┆ M │
│ apple ┆ S │
│ apple ┆ XS │
│ orange ┆ M │
│ orange ┆ S │
│ orange ┆ XS │
└────────┴──────┘
>>> with pl.Config(tbl_rows=-1):
... df.expand('type','size','year',sort=True)
shape: (18, 3)
┌────────┬──────┬──────┐
│ type ┆ size ┆ year │
│ --- ┆ --- ┆ --- │
│ str ┆ str ┆ i64 │
╞════════╪══════╪══════╡
│ apple ┆ M ┆ 2010 │
│ apple ┆ M ┆ 2011 │
│ apple ┆ M ┆ 2012 │
│ apple ┆ S ┆ 2010 │
│ apple ┆ S ┆ 2011 │
│ apple ┆ S ┆ 2012 │
│ apple ┆ XS ┆ 2010 │
│ apple ┆ XS ┆ 2011 │
│ apple ┆ XS ┆ 2012 │
│ orange ┆ M ┆ 2010 │
│ orange ┆ M ┆ 2011 │
│ orange ┆ M ┆ 2012 │
│ orange ┆ S ┆ 2010 │
│ orange ┆ S ┆ 2011 │
│ orange ┆ S ┆ 2012 │
│ orange ┆ XS ┆ 2010 │
│ orange ┆ XS ┆ 2011 │
│ orange ┆ XS ┆ 2012 │
└────────┴──────┴──────┘
Get observations that only occur in the data:
>>> df.expand(pl.struct('type','size'),sort=True).unnest('type')
shape: (4, 2)
┌────────┬──────┐
│ type ┆ size │
│ --- ┆ --- │
│ str ┆ str │
╞════════╪══════╡
│ apple ┆ M │
│ apple ┆ XS │
│ orange ┆ M │
│ orange ┆ S │
└────────┴──────┘
>>> df.expand(pl.struct('type','size','year'),sort=True).unnest('type')
shape: (5, 3)
┌────────┬──────┬──────┐
│ type ┆ size ┆ year │
│ --- ┆ --- ┆ --- │
│ str ┆ str ┆ i64 │
╞════════╪══════╪══════╡
│ apple ┆ M ┆ 2012 │
│ apple ┆ XS ┆ 2010 │
│ orange ┆ M ┆ 2012 │
│ orange ┆ S ┆ 2010 │
│ orange ┆ S ┆ 2011 │
└────────┴──────┴──────┘
Expand the DataFrame to include new observations:
>>> with pl.Config(tbl_rows=-1):
... df.expand('type','size',pl.int_range(2010,2014).alias('new_year'),sort=True)
shape: (24, 3)
┌────────┬──────┬──────────┐
│ type ┆ size ┆ new_year │
│ --- ┆ --- ┆ --- │
│ str ┆ str ┆ i64 │
╞════════╪══════╪══════════╡
│ apple ┆ M ┆ 2010 │
│ apple ┆ M ┆ 2011 │
│ apple ┆ M ┆ 2012 │
│ apple ┆ M ┆ 2013 │
│ apple ┆ S ┆ 2010 │
│ apple ┆ S ┆ 2011 │
│ apple ┆ S ┆ 2012 │
│ apple ┆ S ┆ 2013 │
│ apple ┆ XS ┆ 2010 │
│ apple ┆ XS ┆ 2011 │
│ apple ┆ XS ┆ 2012 │
│ apple ┆ XS ┆ 2013 │
│ orange ┆ M ┆ 2010 │
│ orange ┆ M ┆ 2011 │
│ orange ┆ M ┆ 2012 │
│ orange ┆ M ┆ 2013 │
│ orange ┆ S ┆ 2010 │
│ orange ┆ S ┆ 2011 │
│ orange ┆ S ┆ 2012 │
│ orange ┆ S ┆ 2013 │
│ orange ┆ XS ┆ 2010 │
│ orange ┆ XS ┆ 2011 │
│ orange ┆ XS ┆ 2012 │
│ orange ┆ XS ┆ 2013 │
└────────┴──────┴──────────┘
Filter for missing observations:
>>> columns = ('type','size','year')
>>> with pl.Config(tbl_rows=-1):
... df.expand(*columns).join(df, how='anti', on=columns).sort(by=pl.all())
shape: (13, 3)
┌────────┬──────┬──────┐
│ type ┆ size ┆ year │
│ --- ┆ --- ┆ --- │
│ str ┆ str ┆ i64 │
╞════════╪══════╪══════╡
│ apple ┆ M ┆ 2010 │
│ apple ┆ M ┆ 2011 │
│ apple ┆ S ┆ 2010 │
│ apple ┆ S ┆ 2011 │
│ apple ┆ S ┆ 2012 │
│ apple ┆ XS ┆ 2011 │
│ apple ┆ XS ┆ 2012 │
│ orange ┆ M ┆ 2010 │
│ orange ┆ M ┆ 2011 │
│ orange ┆ S ┆ 2012 │
│ orange ┆ XS ┆ 2010 │
│ orange ┆ XS ┆ 2011 │
│ orange ┆ XS ┆ 2012 │
└────────┴──────┴──────┘
Expand within each group, using by
:
>>> with pl.Config(tbl_rows=-1):
... df.expand('year','size',by='type',sort=True)
shape: (10, 3)
┌────────┬──────┬──────┐
│ type ┆ year ┆ size │
│ --- ┆ --- ┆ --- │
│ str ┆ i64 ┆ str │
╞════════╪══════╪══════╡
│ apple ┆ 2010 ┆ M │
│ apple ┆ 2010 ┆ XS │
│ apple ┆ 2012 ┆ M │
│ apple ┆ 2012 ┆ XS │
│ orange ┆ 2010 ┆ M │
│ orange ┆ 2010 ┆ S │
│ orange ┆ 2011 ┆ M │
│ orange ┆ 2011 ┆ S │
│ orange ┆ 2012 ┆ M │
│ orange ┆ 2012 ┆ S │
└────────┴──────┴──────┘
New in version 0.28.0
Parameters:
Name | Type | Description | Default |
---|---|---|---|
*columns |
ColumnNameOrSelector
|
This refers to the columns to be completed. It can be a string or a column selector or a polars expression. A polars expression can be used to introduced new values, as long as the polars expression has a name that already exists in the DataFrame. |
()
|
sort |
bool
|
Sort the DataFrame based on *columns. |
False
|
by |
ColumnNameOrSelector
|
Column(s) to group by. |
None
|
Returns:
Type | Description |
---|---|
DataFrame | LazyFrame
|
A polars DataFrame/LazyFrame. |
Source code in janitor/polars/complete.py
24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 |
|
pivot_longer
pivot_longer implementation for polars.
pivot_longer(df, index=None, column_names=None, names_to='variable', values_to='value', names_sep=None, names_pattern=None, names_transform=None)
Unpivots a DataFrame from wide to long format.
It is modeled after the pivot_longer
function in R's tidyr package,
and also takes inspiration from the melt
function in R's data.table package.
This function is useful to massage a DataFrame into a format where one or more columns are considered measured variables, and all other columns are considered as identifier variables.
All measured variables are unpivoted (and typically duplicated) along the row axis.
If names_pattern
, use a valid regular expression pattern containing at least
one capture group, compatible with the regex crate.
For more granular control on the unpivoting, have a look at
pivot_longer_spec
.
pivot_longer
can also be applied to a LazyFrame.
Examples:
>>> import polars as pl
>>> import polars.selectors as cs
>>> import janitor.polars
>>> df = pl.DataFrame(
... {
... "Sepal.Length": [5.1, 5.9],
... "Sepal.Width": [3.5, 3.0],
... "Petal.Length": [1.4, 5.1],
... "Petal.Width": [0.2, 1.8],
... "Species": ["setosa", "virginica"],
... }
... )
>>> df
shape: (2, 5)
┌──────────────┬─────────────┬──────────────┬─────────────┬───────────┐
│ Sepal.Length ┆ Sepal.Width ┆ Petal.Length ┆ Petal.Width ┆ Species │
│ --- ┆ --- ┆ --- ┆ --- ┆ --- │
│ f64 ┆ f64 ┆ f64 ┆ f64 ┆ str │
╞══════════════╪═════════════╪══════════════╪═════════════╪═══════════╡
│ 5.1 ┆ 3.5 ┆ 1.4 ┆ 0.2 ┆ setosa │
│ 5.9 ┆ 3.0 ┆ 5.1 ┆ 1.8 ┆ virginica │
└──────────────┴─────────────┴──────────────┴─────────────┴───────────┘
Replicate polars' melt:
>>> df.pivot_longer(index = 'Species').sort(by=pl.all())
shape: (8, 3)
┌───────────┬──────────────┬───────┐
│ Species ┆ variable ┆ value │
│ --- ┆ --- ┆ --- │
│ str ┆ str ┆ f64 │
╞═══════════╪══════════════╪═══════╡
│ setosa ┆ Petal.Length ┆ 1.4 │
│ setosa ┆ Petal.Width ┆ 0.2 │
│ setosa ┆ Sepal.Length ┆ 5.1 │
│ setosa ┆ Sepal.Width ┆ 3.5 │
│ virginica ┆ Petal.Length ┆ 5.1 │
│ virginica ┆ Petal.Width ┆ 1.8 │
│ virginica ┆ Sepal.Length ┆ 5.9 │
│ virginica ┆ Sepal.Width ┆ 3.0 │
└───────────┴──────────────┴───────┘
Split the column labels into individual columns:
>>> df.pivot_longer(
... index = 'Species',
... names_to = ('part', 'dimension'),
... names_sep = '.',
... ).select('Species','part','dimension','value').sort(by=pl.all())
shape: (8, 4)
┌───────────┬───────┬───────────┬───────┐
│ Species ┆ part ┆ dimension ┆ value │
│ --- ┆ --- ┆ --- ┆ --- │
│ str ┆ str ┆ str ┆ f64 │
╞═══════════╪═══════╪═══════════╪═══════╡
│ setosa ┆ Petal ┆ Length ┆ 1.4 │
│ setosa ┆ Petal ┆ Width ┆ 0.2 │
│ setosa ┆ Sepal ┆ Length ┆ 5.1 │
│ setosa ┆ Sepal ┆ Width ┆ 3.5 │
│ virginica ┆ Petal ┆ Length ┆ 5.1 │
│ virginica ┆ Petal ┆ Width ┆ 1.8 │
│ virginica ┆ Sepal ┆ Length ┆ 5.9 │
│ virginica ┆ Sepal ┆ Width ┆ 3.0 │
└───────────┴───────┴───────────┴───────┘
Retain parts of the column names as headers:
>>> df.pivot_longer(
... index = 'Species',
... names_to = ('part', '.value'),
... names_sep = '.',
... ).select('Species','part','Length','Width').sort(by=pl.all())
shape: (4, 4)
┌───────────┬───────┬────────┬───────┐
│ Species ┆ part ┆ Length ┆ Width │
│ --- ┆ --- ┆ --- ┆ --- │
│ str ┆ str ┆ f64 ┆ f64 │
╞═══════════╪═══════╪════════╪═══════╡
│ setosa ┆ Petal ┆ 1.4 ┆ 0.2 │
│ setosa ┆ Sepal ┆ 5.1 ┆ 3.5 │
│ virginica ┆ Petal ┆ 5.1 ┆ 1.8 │
│ virginica ┆ Sepal ┆ 5.9 ┆ 3.0 │
└───────────┴───────┴────────┴───────┘
Split the column labels based on regex:
>>> df = pl.DataFrame({"id": [1], "new_sp_m5564": [2], "newrel_f65": [3]})
>>> df
shape: (1, 3)
┌─────┬──────────────┬────────────┐
│ id ┆ new_sp_m5564 ┆ newrel_f65 │
│ --- ┆ --- ┆ --- │
│ i64 ┆ i64 ┆ i64 │
╞═════╪══════════════╪════════════╡
│ 1 ┆ 2 ┆ 3 │
└─────┴──────────────┴────────────┘
>>> df.pivot_longer(
... index = 'id',
... names_to = ('diagnosis', 'gender', 'age'),
... names_pattern = r"new_?(.+)_(.)([0-9]+)",
... ).select('id','diagnosis','gender','age','value').sort(by=pl.all())
shape: (2, 5)
┌─────┬───────────┬────────┬──────┬───────┐
│ id ┆ diagnosis ┆ gender ┆ age ┆ value │
│ --- ┆ --- ┆ --- ┆ --- ┆ --- │
│ i64 ┆ str ┆ str ┆ str ┆ i64 │
╞═════╪═══════════╪════════╪══════╪═══════╡
│ 1 ┆ rel ┆ f ┆ 65 ┆ 3 │
│ 1 ┆ sp ┆ m ┆ 5564 ┆ 2 │
└─────┴───────────┴────────┴──────┴───────┘
Convert the dtypes of specific columns with names_transform
:
>>> df.pivot_longer(
... index = "id",
... names_pattern=r"new_?(.+)_(.)([0-9]+)",
... names_to=("diagnosis", "gender", "age"),
... names_transform=pl.col('age').cast(pl.Int32),
... ).select("id", "diagnosis", "gender", "age", "value").sort(by=pl.all())
shape: (2, 5)
┌─────┬───────────┬────────┬──────┬───────┐
│ id ┆ diagnosis ┆ gender ┆ age ┆ value │
│ --- ┆ --- ┆ --- ┆ --- ┆ --- │
│ i64 ┆ str ┆ str ┆ i32 ┆ i64 │
╞═════╪═══════════╪════════╪══════╪═══════╡
│ 1 ┆ rel ┆ f ┆ 65 ┆ 3 │
│ 1 ┆ sp ┆ m ┆ 5564 ┆ 2 │
└─────┴───────────┴────────┴──────┴───────┘
Use multiple .value
to reshape the dataframe:
>>> df = pl.DataFrame(
... [
... {
... "x_1_mean": 10,
... "x_2_mean": 20,
... "y_1_mean": 30,
... "y_2_mean": 40,
... "unit": 50,
... }
... ]
... )
>>> df
shape: (1, 5)
┌──────────┬──────────┬──────────┬──────────┬──────┐
│ x_1_mean ┆ x_2_mean ┆ y_1_mean ┆ y_2_mean ┆ unit │
│ --- ┆ --- ┆ --- ┆ --- ┆ --- │
│ i64 ┆ i64 ┆ i64 ┆ i64 ┆ i64 │
╞══════════╪══════════╪══════════╪══════════╪══════╡
│ 10 ┆ 20 ┆ 30 ┆ 40 ┆ 50 │
└──────────┴──────────┴──────────┴──────────┴──────┘
>>> df.pivot_longer(
... index="unit",
... names_to=(".value", "time", ".value"),
... names_pattern=r"(x|y)_([0-9])(_mean)",
... ).select('unit','time','x_mean','y_mean').sort(by=pl.all())
shape: (2, 4)
┌──────┬──────┬────────┬────────┐
│ unit ┆ time ┆ x_mean ┆ y_mean │
│ --- ┆ --- ┆ --- ┆ --- │
│ i64 ┆ str ┆ i64 ┆ i64 │
╞══════╪══════╪════════╪════════╡
│ 50 ┆ 1 ┆ 10 ┆ 30 │
│ 50 ┆ 2 ┆ 20 ┆ 40 │
└──────┴──────┴────────┴────────┘
New in version 0.28.0
Parameters:
Name | Type | Description | Default |
---|---|---|---|
index |
ColumnNameOrSelector
|
Column(s) or selector(s) to use as identifier variables. |
None
|
column_names |
ColumnNameOrSelector
|
Column(s) or selector(s) to unpivot. |
None
|
names_to |
list | tuple | str
|
Name of new column as a string that will contain
what were previously the column names in |
'variable'
|
values_to |
str
|
Name of new column as a string that will contain what
were previously the values of the columns in |
'value'
|
names_sep |
str
|
Determines how the column name is broken up, if
|
None
|
names_pattern |
str
|
Determines how the column name is broken up.
It can be a regular expression containing matching groups.
It takes the same specification as
polars' |
None
|
names_transform |
Expr
|
Use this option to change the types of columns that have been transformed to rows. This does not applies to the values' columns. Accepts a polars expression or a list of polars expressions. Applicable only if one of names_sep or names_pattern is provided. |
None
|
Returns:
Type | Description |
---|---|
DataFrame | LazyFrame
|
A polars DataFrame/LazyFrame that has been unpivoted |
DataFrame | LazyFrame
|
from wide to long format. |
Source code in janitor/polars/pivot_longer.py
184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 |
|
pivot_longer_spec(df, spec)
A declarative interface to pivot a Polars Frame from wide to long form, where you describe how the data will be unpivoted, using a DataFrame.
It is modeled after tidyr's pivot_longer_spec
.
This gives you, the user, more control over the transformation to long form, using a spec DataFrame that describes exactly how data stored in the column names becomes variables.
It can come in handy for situations where
pivot_longer
seems inadequate for the transformation.
New in version 0.28.0
Examples:
>>> import pandas as pd
>>> from janitor.polars import pivot_longer_spec
>>> df = pl.DataFrame(
... {
... "Sepal.Length": [5.1, 5.9],
... "Sepal.Width": [3.5, 3.0],
... "Petal.Length": [1.4, 5.1],
... "Petal.Width": [0.2, 1.8],
... "Species": ["setosa", "virginica"],
... }
... )
>>> df
shape: (2, 5)
┌──────────────┬─────────────┬──────────────┬─────────────┬───────────┐
│ Sepal.Length ┆ Sepal.Width ┆ Petal.Length ┆ Petal.Width ┆ Species │
│ --- ┆ --- ┆ --- ┆ --- ┆ --- │
│ f64 ┆ f64 ┆ f64 ┆ f64 ┆ str │
╞══════════════╪═════════════╪══════════════╪═════════════╪═══════════╡
│ 5.1 ┆ 3.5 ┆ 1.4 ┆ 0.2 ┆ setosa │
│ 5.9 ┆ 3.0 ┆ 5.1 ┆ 1.8 ┆ virginica │
└──────────────┴─────────────┴──────────────┴─────────────┴───────────┘
>>> spec = {'.name':['Sepal.Length','Petal.Length',
... 'Sepal.Width','Petal.Width'],
... '.value':['Length','Length','Width','Width'],
... 'part':['Sepal','Petal','Sepal','Petal']}
>>> spec = pl.DataFrame(spec)
>>> spec
shape: (4, 3)
┌──────────────┬────────┬───────┐
│ .name ┆ .value ┆ part │
│ --- ┆ --- ┆ --- │
│ str ┆ str ┆ str │
╞══════════════╪════════╪═══════╡
│ Sepal.Length ┆ Length ┆ Sepal │
│ Petal.Length ┆ Length ┆ Petal │
│ Sepal.Width ┆ Width ┆ Sepal │
│ Petal.Width ┆ Width ┆ Petal │
└──────────────┴────────┴───────┘
>>> df.pipe(pivot_longer_spec,spec=spec).sort(by=pl.all())
shape: (4, 4)
┌───────────┬───────┬────────┬───────┐
│ Species ┆ part ┆ Length ┆ Width │
│ --- ┆ --- ┆ --- ┆ --- │
│ str ┆ str ┆ f64 ┆ f64 │
╞═══════════╪═══════╪════════╪═══════╡
│ setosa ┆ Petal ┆ 1.4 ┆ 0.2 │
│ setosa ┆ Sepal ┆ 5.1 ┆ 3.5 │
│ virginica ┆ Petal ┆ 5.1 ┆ 1.8 │
│ virginica ┆ Sepal ┆ 5.9 ┆ 3.0 │
└───────────┴───────┴────────┴───────┘
Parameters:
Name | Type | Description | Default |
---|---|---|---|
df |
DataFrame | LazyFrame
|
The source DataFrame to unpivot. It can also be a LazyFrame. |
required |
spec |
DataFrame
|
A specification DataFrame.
At a minimum, the spec DataFrame
must have a |
required |
Raises:
Type | Description |
---|---|
KeyError
|
If |
ValueError
|
If the labels in spec's |
Returns:
Type | Description |
---|---|
DataFrame | LazyFrame
|
A polars DataFrame/LazyFrame. |
Source code in janitor/polars/pivot_longer.py
21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 |
|
row_to_names
row_to_names implementation for polars.
row_to_names(df, row_numbers=0, remove_rows=False, remove_rows_above=False, separator='_')
Elevates a row, or rows, to be the column names of a DataFrame.
Examples:
Replace column names with the first row.
>>> import polars as pl
>>> import janitor.polars
>>> df = pl.DataFrame({
... "a": ["nums", '6', '9'],
... "b": ["chars", "x", "y"],
... })
>>> df
shape: (3, 2)
┌──────┬───────┐
│ a ┆ b │
│ --- ┆ --- │
│ str ┆ str │
╞══════╪═══════╡
│ nums ┆ chars │
│ 6 ┆ x │
│ 9 ┆ y │
└──────┴───────┘
>>> df.row_to_names(0, remove_rows=True)
shape: (2, 2)
┌──────┬───────┐
│ nums ┆ chars │
│ --- ┆ --- │
│ str ┆ str │
╞══════╪═══════╡
│ 6 ┆ x │
│ 9 ┆ y │
└──────┴───────┘
>>> df.row_to_names(row_numbers=[0,1], remove_rows=True)
shape: (1, 2)
┌────────┬─────────┐
│ nums_6 ┆ chars_x │
│ --- ┆ --- │
│ str ┆ str │
╞════════╪═════════╡
│ 9 ┆ y │
└────────┴─────────┘
Remove rows above the elevated row and the elevated row itself.
>>> df = pl.DataFrame({
... "a": ["bla1", "nums", '6', '9'],
... "b": ["bla2", "chars", "x", "y"],
... })
>>> df
shape: (4, 2)
┌──────┬───────┐
│ a ┆ b │
│ --- ┆ --- │
│ str ┆ str │
╞══════╪═══════╡
│ bla1 ┆ bla2 │
│ nums ┆ chars │
│ 6 ┆ x │
│ 9 ┆ y │
└──────┴───────┘
>>> df.row_to_names(1, remove_rows=True, remove_rows_above=True)
shape: (2, 2)
┌──────┬───────┐
│ nums ┆ chars │
│ --- ┆ --- │
│ str ┆ str │
╞══════╪═══════╡
│ 6 ┆ x │
│ 9 ┆ y │
└──────┴───────┘
New in version 0.28.0
Parameters:
Name | Type | Description | Default |
---|---|---|---|
row_numbers |
int | list | slice
|
Position of the row(s) containing the variable names. It can be an integer, list or a slice. |
0
|
remove_rows |
bool
|
Whether the row(s) should be removed from the DataFrame. |
False
|
remove_rows_above |
bool
|
Whether the row(s) above the selected row should be removed from the DataFrame. |
False
|
separator |
str
|
Combines the labels into a single string, if row_numbers is a list of integers. Default is '_'. |
'_'
|
Returns:
Type | Description |
---|---|
DataFrame
|
A polars DataFrame. |
Source code in janitor/polars/row_to_names.py
22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 |
|